Sparse Inverse Covariance Selection via Alternating Linearization Methods
نویسندگان
چکیده
Gaussian graphical models are of great interest in statistical learning. Because the conditional independencies between different nodes correspond to zero entries in the inverse covariance matrix of the Gaussian distribution, one can learn the structure of the graph by estimating a sparse inverse covariance matrix from sample data, by solving a convex maximum likelihood problem with an l1-regularization term. In this paper, we propose a first-order method based on an alternating linearization technique that exploits the problem’s special structure; in particular, the subproblems solved in each iteration have closed-form solutions. Moreover, our algorithm obtains an ε-optimal solution in O(1/ε) iterations. Numerical experiments on both synthetic and real data from gene association networks show that a practical version of this algorithm outperforms other competitive algorithms.
منابع مشابه
Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection
Chandrasekaran, Parrilo, and Willsky (2012) proposed a convex optimization problem for graphical model selection in the presence of unobserved variables. This convex optimization problem aims to estimate an inverse covariance matrix that can be decomposed into a sparse matrix minus a low-rank matrix from sample data. Solving this convex optimization problem is very challenging, especially for l...
متن کاملAlternating linearization for structured regularization problems
OF THE DISSERTATION Alternating linearization for structured regularization problems by Minh Pham Dissertation Director: Andrzej Ruszczyński Xiaodong Lin We adapt the alternating linearization method for proximal decomposition to structured regularization problems. The method is related to two well-known operator splitting methods, the Douglas-Rachford and the Peaceman-Rachford method, but it h...
متن کاملA path following algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE)
Given n observations of a p-dimensional random vector, the covariance matrix and its inverse (precision matrix) are needed in a wide range of applications. Sample covariance (e.g. its eigenstructure) can misbehave when p is comparable to the sample size n. Regularization is often used to mitigate the problem. In this paper, we proposed an `1 penalized pseudo-likelihood estimate for the inverse ...
متن کاملA Proximal Point Algorithm for Log-Determinant Optimization with Group Lasso Regularization
We consider the covariance selection problem where variables are clustered into groups and the inverse covariance matrix is expected to have a blockwise sparse structure. This problem is realized via penalizing the maximum likelihood estimation of the inverse covariance matrix by group Lasso regularization. We propose to solve the resulting log-determinant optimization problem with the classica...
متن کاملAn inexact interior point method for L 1-regularized sparse covariance selection
Sparse covariance selection problems can be formulated as log-determinant (log-det ) semidefinite programming (SDP) problems with large numbers of linear constraints. Standard primal-dual interior-point methods that are based on solving the Schur complement equation would encounter severe computational bottlenecks if they are applied to solve these SDPs. In this paper, we consider a customized ...
متن کامل